Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.855
Filtrar
1.
Virulence ; 15(1): 2333562, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38622757

RESUMO

The Picornaviridae are a large group of positive-sense, single-stranded RNA viruses, and most research has focused on the Enterovirus genus, given they present a severe health risk to humans. Other picornaviruses, such as foot-and-mouth disease virus (FMDV) and senecavirus A (SVA), affect agricultural production with high animal mortality to cause huge economic losses. The 3Dpol protein of picornaviruses is widely known to be used for genome replication; however, a growing number of studies have demonstrated its non-polymerase roles, including modulation of host cell biological processes, viral replication complex assembly and localization, autophagy, and innate immune responses. Currently, there is no effective vaccine to control picornavirus diseases widely, and clinical therapeutic strategies have limited efficiency in combating infections. Many efforts have been made to develop different types of drugs to prohibit virus survival; the most important target for drug development is the virus polymerase, a necessary element for virus replication. For picornaviruses, there are also active efforts in targeted 3Dpol drug development. This paper reviews the interaction of 3Dpol proteins with the host and the progress of drug development targeting 3Dpol.


Assuntos
Enterovirus , Vírus da Febre Aftosa , Infecções por Picornaviridae , Animais , Humanos , Produtos do Gene pol/metabolismo , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/metabolismo , Replicação Viral , RNA Viral/genética
2.
Sci Rep ; 14(1): 8931, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637656

RESUMO

Whether mice can be used as a foot-and-mouth disease (FMD) model has been debated for a long time. However, the major histocompatibility complex between pigs and mice is very different. In this study, the protective effects of FMD vaccines in different animal models were analyzed by a meta-analysis. The databases PubMed, China Knowledge Infrastructure, EMBASE, and Baidu Academic were searched. For this purpose, we evaluated evidence from 14 studies that included 869 animals with FMD vaccines. A random effects model was used to combine effects using Review Manager 5.4 software. A forest plot showed that the protective effects in pigs were statistically non-significant from those in mice [MH = 0.56, 90% CI (0.20, 1.53), P = 0.26]. The protective effects in pigs were also statistically non-significant from those in guinea pigs [MH = 0.67, 95% CI (0.37, 1.21), P = 0.18] and suckling mice [MH = 1.70, 95% CI (0.10, 28.08), P = 0.71]. Non-inferiority test could provide a hypothesis that the models (mice, suckling mice and guinea pigs) could replace pigs as FMDV vaccine models to test the protective effect of the vaccine. Strict standard procedures should be established to promote the assumption that mice and guinea pigs should replace pigs in vaccine evaluation.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Cobaias , Camundongos , Febre Aftosa/prevenção & controle , Anticorpos Antivirais , Modelos Animais
3.
Sci Rep ; 14(1): 7929, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575673

RESUMO

Foot and mouth disease (FMD) is a highly contagious, endemic, and acute viral cattle ailment that causes major economic damage in Ethiopia. Although several serotypes of the FMD virus have been detected in Ethiopia, there is no documented information about the disease's current serostatus and serotypes circulating in the Wolaita zone. Thus, from March to December 2022, a cross-sectional study was conducted to evaluate FMDV seroprevalence, molecular detection, and serotype identification in three Wolaita Zone sites. A multistage sample procedure was used to choose three peasant associations from each study region, namely Wolaita Sodo, Offa district, and Boloso sore district. A systematic random sampling technique was employed to pick 384 cattle from the population for the seroprevalence research, and 10 epithelial tissue samples were purposefully taken from outbreak individuals for molecular detection of FMDV. The sera were examined using 3ABC FMD NSP Competition ELISA to find antibodies against FMDV non-structural proteins, whereas epithelial tissue samples were analyzed for molecular detection using real-time RT-PCR, and sandwich ELISA was used to determine the circulating serotypes. A multivariable logistic regression model was used to evaluate the associated risk variables. The total seroprevalence of FMD in cattle was 46.88% (95% CI 41.86-51.88), with Wolaita Sodo Town having the highest seroprevalence (63.28%). As a consequence, multivariable logistic regression analysis revealed that animal age, herd size, and interaction with wildlife were all substantially related to FMD seroprevalence (p < 0.05). During molecular detection, only SAT-2 serotypes were found in 10 tissue samples. Thus, investigating FMD outbreaks and identifying serotypes and risk factors for seropositivity are critical steps in developing effective control and prevention strategies based on the kind of circulating serotype. Moreover, further research for animal species other than cattle was encouraged.


Assuntos
Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , Humanos , Bovinos , Animais , Vírus da Febre Aftosa/genética , Estudos Soroepidemiológicos , Estudos Transversais , Etiópia/epidemiologia , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/epidemiologia , Febre Aftosa/diagnóstico , Febre Aftosa/epidemiologia , Sorogrupo , Surtos de Doenças/veterinária , Animais Selvagens , Anticorpos Antivirais
4.
Arch Virol ; 169(5): 101, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630189

RESUMO

Foot-and-mouth disease is a highly contagious disease affecting cloven-hoofed animals, resulting in considerable economic losses. Its causal agent is foot-and-mouth disease virus (FMDV), a picornavirus. Due to its error-prone replication and rapid evolution, the transmission and evolutionary dynamics of FMDV can be studied using genomic epidemiological approaches. To analyze FMDV evolution and identify possible transmission routes in an Argentinean region, field samples that tested positive for FMDV by PCR were obtained from 21 farms located in the Mar Chiquita district. Whole FMDV genome sequences were obtained by PCR amplification in seven fragments and sequencing using the Sanger technique. The genome sequences obtained from these samples were then analyzed using phylogenetic, phylogeographic, and evolutionary approaches. Three local transmission clusters were detected among the sampled viruses. The dataset was analyzed using Bayesian phylodynamic methods with appropriate coalescent and relaxed molecular clock models. The estimated mean viral evolutionary rate was 1.17 × 10- 2 substitutions/site/year. No significant differences in the rate of viral evolution were observed between farms with vaccinated animals and those with unvaccinated animals. The most recent common ancestor of the sampled sequences was dated to approximately one month before the first reported case in the outbreak. Virus transmission started in the south of the district and later dispersed to the west, and finally arrived in the east. Different transmission routes among the studied herds, such as non-replicating vectors and close contact contagion (i.e., aerosols), may be responsible for viral spread.


Assuntos
Vírus da Febre Aftosa , Picornaviridae , Animais , Vírus da Febre Aftosa/genética , Argentina/epidemiologia , Teorema de Bayes , Filogenia
5.
Prev Vet Med ; 226: 106192, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564991

RESUMO

Foot-and-mouth disease is a controlled disease in accordance with the South African Animal Diseases Act (Act 35 of 1984). The country was classified by the World Organisation for Animal Health (WOAH) as having a FMD free zone without vaccination in 1996. However, this status was suspended in 2019 due to a FMD outbreak outside the controlled zones. FMD control in South Africa includes animal movement restrictions placed on cloven-hoofed species and products, prophylactic vaccination of cattle, clinical surveillance of susceptible species, and disease control fencing to separate livestock from wildlife reservoirs. The objectives of this study were to evaluate differences in identifying high-risk areas for FMD using risk factor and expert opinion elicitation analysis. Differences in risk between FMD introduction and FMD spread within the FMD protection zone with vaccination (PZV) of South Africa (2007-2016) were also investigated. The study was conducted in the communal farming area of the FMD PZV, which is adjacent to wildlife reserves and characterised by individual faming units. Eleven risk factors that were considered important for FMD occurrence and spread were used to build a weighted linear combination (WLC) score based on risk factor data and expert opinion elicitation. A multivariable conditional logistic regression model was also used to calculate predicted probabilities of a FMD outbreak for all dip-tanks within the study area. Smoothed Bayesian kriged maps were generated for 11 individual risk factors, overall WLC scores for FMD occurrence and spread and for predicted probabilities of a FMD outbreak based on the conditional logistic regression model. Descriptively, vaccine matching was believed to have a great influence on both FMD occurrence and spread. Expert opinion suggested that FMD occurrence was influenced predominantly by proximity to game reserves and cattle density. Cattle populations and vaccination practices were considered most important for FMD spread. Highly effective cattle inspections were observed within areas that previously reported FMD outbreaks, indicating the importance of cattle inspection (surveillance) as a necessary element of FMD outbreak detection. The multivariable conditional logistic regression analysis, which was consistent with expert opinion elicitation; identified three factors including cattle population density (OR 3.87, 95% CI 1.47-10.21) and proximities to game reserve fences (OR 0.82, 95% CI 0.73-0.92) and rivers (OR 1.04, 95% CI 1.01-1.07) as significant factors for reported FMD outbreaks. Regaining and maintaining an FMD-free status without vaccination requires frequent monitoring of high-risk areas and designing targeted surveillance.


Assuntos
Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , Animais , Bovinos , Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle , África do Sul/epidemiologia , Teorema de Bayes , Prova Pericial , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/prevenção & controle , Animais Selvagens , Fatores de Risco , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária
6.
Viruses ; 16(3)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38543822

RESUMO

Since the foot-and-mouth disease (FMD) outbreak in South Korea in 2010-2011, vaccination policies utilizing inactivated FMD vaccines composed of types O and A have been implemented nationwide. However, because type Asia1 occurred in North Korea in 2007 and intermittently in neighboring countries, the risk of type Asia1 introduction cannot be ruled out. This study evaluated the antigen yield and viral inactivation kinetics of the recombinant Asia1 Shamir vaccine strain (Asia1 Shamir-R). When Asia1 Shamir-R was proliferated in shaking flasks (1 L), a 2 L bioreactor (1 L), and a wave bioreactor (25 L), the antigen yields were 7.5 µg/mL, 5.2 µg/mL, and 3.8 µg/mL, respectively. The optimal FMDV inactivation conditions were 2 mM BEI at 26 °C and 1.0 mM BEI at 37 °C. There was no antigen loss due to BEI treatment, and only a decrease in antigen levels was observed during storage. The sera from pigs immunized with antigen derived from a bioreactor exhibited a neutralizing antibody titer of approximately 1/1000 against Asia1 Shamir and Asia1/MOG/05 viruses; therefore, Asia1 Shamir-R is expected to provide sufficient protection against both viruses. If an FMD vaccine production facility is established, this Asia1 Shamir-R can be employed for domestic antigen banks in South Korea.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Suínos , Inativação de Vírus , Proteínas do Capsídeo , Vacinas Sintéticas , Reatores Biológicos
7.
Cells ; 13(6)2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38534383

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious and economically important disease of cloven-hoofed animals that hampers trade and production. To ensure effective infection, the foot-and-mouth disease virus (FMDV) evades host antiviral pathways in different ways. Although the effect of histone deacetylase 5 (HDAC5) on the innate immune response has previously been documented, the precise molecular mechanism underlying HDAC5-mediated FMDV infection is not yet clearly understood. In this study, we found that silencing or knockout of HDAC5 promoted FMDV replication, whereas HDAC5 overexpression significantly inhibited FMDV propagation. IFN-ß and IFN-stimulated response element (ISRE) activity was strongly activated through the overexpression of HDAC5. The silencing and knockout of HDAC5 led to an increase in viral replication, which was evident by decreased IFN-ß, ISG15, and ISG56 production, as well as a noticeable reduction in IRF3 phosphorylation. Moreover, the results showed that the FMDV capsid protein VP1 targets HDAC5 and facilitates its degradation via the proteasomal pathway. In conclusion, this study highlights that HDAC5 acts as a positive modulator of IFN-ß production during viral infection, while FMDV capsid protein VP1 antagonizes the HDAC5-mediated antiviral immune response by degrading HDAC5 to facilitate viral replication.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Interferon Tipo I , Animais , Proteínas do Capsídeo/metabolismo , Transdução de Sinais , Febre Aftosa/metabolismo , Imunidade Inata , Interferon Tipo I/metabolismo
8.
J Virol Methods ; 326: 114906, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479084

RESUMO

Foot-and-mouth disease (FMD) is a contagious viral disease of cloven-footed animals. Immunization with inactivated virus vaccine is effective to control the disease. Six-monthly vaccination regimen in endemic regions has proven to be effective. To enable the differentiation of infected animals from those vaccinated, non-structural proteins (NSPs) are excluded during vaccine production. While the antibodies to structural proteins (SPs) could be observed both in vaccinated and infected animals, NSP antibodies are detectable only in natural infection. Quality control assays that detect NSPs in vaccine antigen preparations, are thus vital in the FMD vaccine manufacturing process. In this study, we designed a chemiluminescence dot blot assay to detect the 3A and 3B NSPs of FMDV. It is sensitive enough to detect up to 20 ng of the NSP, and exhibited specificity as it does not react with the viral SPs. This cost-effective assay holds promise in quality control assessment in FMD vaccine manufacturing.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Febre Aftosa/diagnóstico , Febre Aftosa/prevenção & controle , Luminescência , Anticorpos Antivirais , Proteínas não Estruturais Virais , Sensibilidade e Especificidade , Ensaio de Imunoadsorção Enzimática
9.
Microbiol Spectr ; 12(4): e0337223, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38466127

RESUMO

Foot-and-mouth disease (FMD) is one of the most devastating diseases of livestock which can cause significant economic losses, especially when introduced to FMD-free countries. FMD virus (FMDV) belongs to the family Picornaviridae and is antigenically heterogeneous with seven established serotypes. The prevailing preventive and control strategies are limited to restriction of animal movement and elimination of infected or exposed animals, which can be potentially combined with vaccination. However, FMD vaccination has limitations including delayed protection and lack of cross-protection against different serotypes. Recently, antiviral drug use for FMD outbreaks has increasingly been recognized as a potential tool to augment the existing early response strategies, but limited research has been reported on potential antiviral compounds for FMDV. FMDV 3C protease (3Cpro) cleaves the viral-encoded polyprotein into mature and functional proteins during viral replication. The essential role of viral 3Cpro in viral replication and the high conservation of 3Cpro among different FMDV serotypes make it an excellent target for antiviral drug development. We have previously reported multiple series of inhibitors against picornavirus 3Cpro or 3C-like proteases (3CLpros) encoded by coronaviruses or caliciviruses. In this study, we conducted structure-activity relationship studies for our in-house focused compound library containing 3Cpro or 3CLpro inhibitors against FMDV 3Cpro using enzyme and cell-based assays. Herein, we report the discovery of aldehyde and α-ketoamide inhibitors of FMDV 3Cpro with high potency. These data inform future preclinical studies that are related to the advancement of these compounds further along the drug development pathway.IMPORTANCEFood-and-mouth disease (FMD) virus (FMDV) causes devastating disease in cloven-hoofed animals with a significant economic impact. Emergency response to FMD outbreaks to limit FMD spread is critical, and the use of antivirals may overcome the limitations of existing control measures by providing immediate protection for susceptible animals. FMDV encodes 3C protease (3Cpro), which is essential for virus replication and an attractive target for antiviral drug discovery. Here, we report a structure-activity relationship study on multiple series of protease inhibitors and identified potent inhibitors of FMDV 3Cpro. Our results suggest that these compounds have the potential for further development as FMD antivirals.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Vírus da Febre Aftosa/metabolismo , Peptídeo Hidrolases/metabolismo , Sorogrupo , Febre Aftosa/tratamento farmacológico , Febre Aftosa/prevenção & controle , Endopeptidases/metabolismo , Proteases Virais 3C , Antivirais/farmacologia
10.
Cell Mol Life Sci ; 81(1): 148, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509419

RESUMO

Propagation of viruses requires interaction with host factors in infected cells and repression of innate immune responses triggered by the host viral sensors. Cytosolic DNA sensing pathway of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) is a major component of the antiviral response to DNA viruses, also known to play a relevant role in response to infection by RNA viruses, including foot-and-mouth disease virus (FMDV). Here, we provide supporting evidence of cGAS degradation in swine cells during FMDV infection and show that the two virally encoded proteases, Leader (Lpro) and 3Cpro, target cGAS for cleavage to dampen the cGAS/STING-dependent antiviral response. The specific target sequence sites on swine cGAS were identified as Q140/T141 for the FMDV 3Cpro and the KVKNNLKRQ motif at residues 322-330 for Lpro. Treatment of swine cells with inhibitors of the cGAS/STING pathway or depletion of cGAS promoted viral infection, while overexpression of a mutant cGAS defective for cGAMP synthesis, unlike wild type cGAS, failed to reduce FMDV replication. Our findings reveal a new mechanism of RNA viral antagonism of the cGAS-STING innate immune sensing pathway, based on the redundant degradation of cGAS through the concomitant proteolytic activities of two proteases encoded by an RNA virus, further proving the key role of cGAS in restricting FMDV infection.


Assuntos
Vírus da Febre Aftosa , Animais , Suínos , Vírus da Febre Aftosa/metabolismo , Peptídeo Hidrolases/metabolismo , Transdução de Sinais , Imunidade Inata , Endopeptidases/genética , Endopeptidases/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Antivirais/metabolismo
11.
Front Cell Infect Microbiol ; 14: 1331779, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510965

RESUMO

Background: Commercial foot-and-mouth disease (FMD) vaccines have limitations, such as local side effects, periodic vaccinations, and weak host defenses. To overcome these limitations, we developed a novel FMD vaccine by combining an inactivated FMD viral antigen with the small molecule isoprinosine, which served as an adjuvant (immunomodulator). Method: We evaluated the innate and adaptive immune responses elicited by the novel FMD vaccine involved both in vitro and in vivo using mice and pigs. Results: We demonstrated isoprinosine-mediated early, mid-term, and long-term immunity through in vitro and in vivo studies and complete host defense against FMD virus (FMDV) infection through challenge experiments in mice and pigs. We also elucidated that isoprinosine induces innate and adaptive (cellular and humoral) immunity via promoting the expression of immunoregulatory gene such as pattern recognition receptors [PRRs; retinoic acid-inducible gene (RIG)-I and toll like receptor (TLR)9], transcription factors [T-box transcription factor (TBX)21, eomesodermin (EOMES), and nuclear factor kappa B (NF-kB)], cytokines [interleukin (IL)-12p40, IL-23p19, IL-23R, and IL-17A)], and immune cell core receptors [cluster of differentiation (CD)80, CD86, CD28, CD19, CD21, and CD81] in pigs. Conclusion: These findings present an attractive strategy for constructing novel FMD vaccines and other difficult-to-control livestock virus vaccine formulations based on isoprinosine induced immunomodulatory functions.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Inosina Pranobex , Vacinas Virais , Animais , Camundongos , Suínos , Adjuvantes de Vacinas , Anticorpos Antivirais , Adjuvantes Imunológicos , Interleucinas , Imunidade
12.
PLoS Pathog ; 20(3): e1012104, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512977

RESUMO

The interaction between foot-and-mouth disease virus (FMDV) and the host is extremely important for virus infection, but there are few researches on it, which is not conducive to vaccine development and FMD control. In this study, we designed a porcine genome-scale CRISPR/Cas9 knockout library containing 93,859 single guide RNAs targeting 16,886 protein-coding genes, 25 long ncRNAs, and 463 microRNAs. Using this library, several previously unreported genes required for FMDV infection are highly enriched post-FMDV selection in IBRS-2 cells. Follow-up studies confirmed the dependency of FMDV on these genes, and we identified a functional role for one of the FMDV-related host genes: TOB1 (Transducer of ERBB2.1). TOB1-knockout significantly inhibits FMDV infection by positively regulating the expression of RIG-I and MDA5. We further found that TOB1-knockout led to more accumulation of mRNA transcripts of transcription factor CEBPA, and thus its protein, which further enhanced transcription of RIG-I and MDA5 genes. In addition, TOB1-knockout was shown to inhibit FMDV adsorption and internalization mediated by EGFR/ERBB2 pathway. Finally, the FMDV lethal challenge on TOB1-knockout mice confirmed that the deletion of TOB1 inhibited FMDV infection in vivo. These results identify TOB1 as a key host factor involved in FMDV infection in pigs.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Camundongos , Receptores ErbB/metabolismo , Febre Aftosa/genética , Vírus da Febre Aftosa/genética , Regulação da Expressão Gênica , RNA Guia de Sistemas CRISPR-Cas , Suínos
13.
Antiviral Res ; 223: 105836, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360296

RESUMO

Foot-and-mouth disease (FMD) is an economically important disease, and the FMD virus (FMDV) can spread rapidly in susceptible animals. FMD is usually controlled through vaccination. However, commercial FMD vaccines are only effective 4-7 days after vaccination. Furthermore, FMDV comprises seven serotypes and various topotypes, and these aspects should be considered when selecting a vaccine. Antiviral agents could provide rapid and broad protection against FMDV. Therefore, this study aimed to develop a fusion protein of consensus porcine interferon-α and Fc portion of porcine antibody IgG (poIFN-α-Fc) using a baculovirus expression system to develop a novel antiviral agent against FMDV. We measured the antiviral effects of the poIFN-α-Fc protein against FMDV and the enhanced duration in vitro and in vivo. The broad-spectrum antiviral effects were tested against seven FMDV serotypes, porcine reproductive and respiratory syndrome virus (PRRSV), and bovine enterovirus (BEV). Furthermore, the early protective effects and neutralizing antibody levels were tested by co-injecting poIFN-α-Fc and an FMD-inactivated vaccine into mice or pigs. Sustained antiviral effects in pig sera and mice were observed, and pigs injected with a combination of the poIFN-α-Fc and an inactivated FMD vaccine were protected against FMDV in a dose-dependent manner at 2- and 4-days post-vaccination. In addition, combined with the inactivated FMD vaccine, poIFN-α-Fc increased the neutralizing antibody levels in mice. Therefore, poIFN-α-Fc is a potential broad-spectrum antiviral and adjuvant candidate that can be used with inactivated FMD vaccines to protect pigs against FMDV.


Assuntos
Vírus da Febre Aftosa , Vacinas , Bovinos , Suínos , Animais , Camundongos , Interferon-alfa/farmacologia , Anticorpos Neutralizantes , Imunoglobulina G , Antivirais/farmacologia
14.
Arch Virol ; 169(3): 44, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341400

RESUMO

Foot-and-mouth disease is a highly contagious disease that affects cloven-hoofed animals. It has an important socio-economic impact on the livestock industry because it produces a drastic decrease of productivity. The disease has been successfully eradicated from some regions, including North America and Western Europe, but it is still endemic in developing countries. Agriculture plays an important role in the national economy of Vietnam, to which animal production contributes a great proportion. The concurrent circulation of foot-and-mouth disease virus (FMDV) serotypes O, A, and Asia 1 has been detected in recent years, but serotype O remains the most prevalent and is responsible for the highest numbers of outbreaks. Appropriate vaccine strain selection is an important element in the control of FMD and is necessary for the application of vaccination programs in FMD-affected regions. Here, we present updated information about the genetic and antigenic characteristics of circulating strains, collected from endemic outbreaks involving types O and A, between 2010 and 2019. Neutralizing assays showed a good in vitro match between type O strains and the monovalent O1 Campos vaccine strain. High r1 values were obtained (above 0.7) when testing a swine serum pool collected 21 days after vaccination, but the O/VTN/2/2019 strain was an exception. An EPP estimation resulted in a median neutralizing titre of about 1.65 log10, indicating that good protection could be achieved. For type A Asia SEA 97 lineage strains, acceptable individual neutralizing titres were obtained with estimated EPP values over 80% for different combinations of vaccine strains. Taking into account that the r1 value is one tool of a battery of tests that should be considered for estimating the cross-protection of a field strain against a vaccine strain, an in vivo challenge experiment was also performed, yielding a PD50 value of 8.0. The results indicate that South American strains could be potentially used for controlling outbreaks involving these lineages. This study demonstrates the importance of considering strain characteristics when choosing vaccine strains and controls.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Suínos , Vietnã/epidemiologia , Vacinas Virais/genética , Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle , Antígenos Virais/genética , Sorogrupo
15.
Artigo em Inglês | MEDLINE | ID: mdl-38341952

RESUMO

OBJECTIVE: We created a novel, high sensitivity immunochromatographic assay that allows for clear and precise quantitative analysis by employing innovative bimetallic nanoparticles with peroxide-like activity as markers for the preparation of the test strip. METHODS: Initially, we synthesized Pt-Pd bimetallic nanoparticles through the reduction of K2PtCl4 and Na2PdCl4 using ascorbic acid (AA) in an ultrasonic water bath. These bimetallic nanoparticles were then utilized to label purified antigens from the foot-and-mouth disease virus (FMDV) type O (FMDV-146S), resulting in the creation of antigen-captured nanomarkers. Upon completion of the antigen-antibody reaction, we introduced a color-developing agent (3,3',5,5'-tetramethylbenzidine) for cascade amplification, significantly enhancing detection sensitivity while ensuring clear and accurate quantitative analysis. RESULTS: The quantitative detection sensitivity achieved was 1:28/test, with a linear range spanning from 1:26 âˆ¼ 1:29 /test. For FMDV type O positive serum, the detection sensitivity reached 96.7 %. Furthermore, this method exhibited a 95 % detection sensitivity for FMDV negative serum, FMDV type A and type AsiaⅠ positive sera, as well as sera positive for other common viral diseases in animals. In comparison to the OIE-recommended LPB-ELISA, this approach displayed higher correlation (correlation coefficient = 0.909). Innovation was at the core of establishing this immunochromatographic assay based on Pt-Pd bimetallic nanoparticles for the detection of FMDV antibodies. CONCLUSION: The findings revealed a striking 24-fold improvement in sensitivity when compared to colloidal gold, accompanied by a strong correlation coefficient (R2 > 0.9). This suggests a robust and consistent linear association in the results. This method represents a significant advancement in the field of rapid immunochromatographic assays, offering a promising alternative application for bimetallic nanoparticles.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Febre Aftosa/diagnóstico , Sorogrupo , Imunoensaio/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Sensibilidade e Especificidade
16.
J Vet Sci ; 25(1): e13, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38311326

RESUMO

BACKGROUND: Foot-and-mouth disease (FMD) is a highly contagious viral disease in livestock that has tremendous economic impact nationally. After multiple FMD outbreaks, the South Korean government implemented a vaccination policy for efficient disease control. However, during active surveillance by quarantine authorities, pig farms have reported an insufficient antibody positivity rate to FMD. OBJECTIVE: In this study, the spatial and temporal trends of insufficiency among pig farms were analyzed, and the effect of the number of government veterinary officers was explored as a potential preventive factor. METHODS: Various data were acquired, including national-level surveillance data for antibody insufficiency from the Korea Animal Health Integrated System, the number of veterinary officers, and the number of local pig farms. Temporal and geographical descriptive analyses were conducted to overview spatial and temporal trends. Additionally, logistic regression models were employed to investigate the association between the number of officers per pig farm with antibody insufficiency. Spatial cluster analysis was conducted to detect spatial clusters. RESULTS: The results showed that the incidence of insufficiency tended to decrease in recent years (odds ratio [OR], 0.803; 95% confidence interval [95% CIs], 0.721-0.893), and regions with a higher density of governmental veterinary officers (OR, 0.942; 95% CIs, 0.918-0.965) were associated with a lower incidence. CONCLUSIONS: This study implies that previously conducted national interventions would be effective, and the quality of government-provided veterinary care could play an important role in addressing the insufficient positivity rate of antibodies.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Doenças dos Suínos , Animais , Anticorpos , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Fazendas , Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle , Gado , República da Coreia/epidemiologia , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/prevenção & controle
17.
Prev Vet Med ; 224: 106120, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309135

RESUMO

FMD is an acute contagious disease that poses a significant threat to the health and safety of cloven-hoofed animals in Asia, Europe, and Africa. The impact of FMD exhibits geographical disparities within different regions of China. The present investigation undertook an exhaustive analysis of documented occurrences of bovine FMD in China, spanning the temporal range from 2011 to 2020. The overarching objective was to elucidate the temporal and spatial dynamics underpinning these outbreaks. Acknowledging the pivotal role of global factors in FMD outbreaks, advanced machine learning techniques were harnessed to formulate an optimal prediction model by integrating comprehensive meteorological data pertinent to global FMD. Random Forest algorithm was employed with top three contributing factors including Isothermality(bio3), Annual average temperature(bio1) and Minimum temperature in the coldest month(bio6), all relevant to temperature. By encompassing both local and global factors, our study provides a comprehensive framework for understanding and predicting FMD outbreaks. Furthermore, we conducted a phylogenetic analysis to trace the origin of Foot-and-mouth disease virus (FMDV), pinpointing India as the country posing the greatest potential hazard by leveraging the spatio-temporal attributes of the collected data. Based on this finding, a quantitative risk model was developed for the legal importation of live cattle from India to China. The model estimated an average probability of 0.002254% for FMDV-infected cattle imported from India to China. TA sensitivity analysis identified two critical nodes within the model: he possibility of false negative clinical examination in infected cattle at destination (P5) and he possibility of false negative clinical examination in infected cattle at source(P3). This comprehensive approach offers a thorough evaluation of FMD landscape within China, considering both domestic and global perspectives, thereby augmenting the efficacy of early warning mechanisms.


Assuntos
Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , Bovinos , Animais , Febre Aftosa/epidemiologia , Filogenia , Doenças dos Bovinos/epidemiologia , Surtos de Doenças/veterinária , China/epidemiologia , Análise Espaço-Temporal
18.
J R Soc Interface ; 21(211): 20230445, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38379412

RESUMO

Understanding the population dynamics of an infectious disease requires linking within-host dynamics and between-host transmission in a quantitative manner, but this is seldom done in practice. Here a simple phenomenological model for viral dynamics within a host is linked to between-host transmission by assuming that the probability of transmission is related to log viral titre. Data from transmission experiments for two viral diseases of livestock, foot-and-mouth disease virus in cattle and swine influenza virus in pigs, are used to parametrize the model and, importantly, test the underlying assumptions. The model allows the relationship between within-host parameters and transmission to be determined explicitly through their influence on the reproduction number and generation time. Furthermore, these critical within-host parameters (time and level of peak titre, viral growth and clearance rates) can be computed from more complex within-host models, raising the possibility of assessing the impact of within-host processes on between-host transmission in a more detailed quantitative manner.


Assuntos
Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , Doenças dos Suínos , Viroses , Animais , Suínos , Bovinos , Febre Aftosa/epidemiologia , Gado , Doenças dos Bovinos/epidemiologia , Viroses/veterinária , Doenças dos Suínos/epidemiologia
19.
Microbiol Spectr ; 12(3): e0365823, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38323828

RESUMO

The internal ribosome entry site (IRES) element constitutes a cis-acting RNA regulatory sequence that recruits the ribosomal initiation complex in a cap-independent manner, assisted by various RNA-binding proteins and IRES trans-acting factors. Foot-and-mouth disease virus (FMDV) contains a functional IRES element and takes advantage of this element to subvert host translation machinery. Our study identified a novel mechanism wherein RALY, a member of the heterogeneous nuclear ribonucleoproteins (hnRNP) family belonging to RNA-binding proteins, binds to the domain 3 of FMDV IRES via its RNA recognition motif residue. This interaction results in the downregulation of FMDV replication by inhibiting IRES-driven translation. Furthermore, our findings reveal that the inhibitory effect exerted by RALY on FMDV replication is not attributed to the FMDV IRES-mediated assembly of translation initiation complexes but rather to the impediment of 80S ribosome complex formation after binding with 40S ribosomes. Conversely, 3Cpro of FMDV counteracts RALY-mediated inhibition by the ubiquitin-proteasome pathway. Therefore, these results indicate that RALY, as a novel critical IRES-binding protein, inhibits FMDV replication by blocking the formation of 80S ribosome, providing a deeper understanding of how viruses recruit and manipulate host factors. IMPORTANCE: The translation of FMDV genomic RNA driven by IRES element is a crucial step for virus infections. Many host proteins are hijacked to regulate FMDV IRES-dependent translation, but the regulatory mechanism remains unknown. Here, we report for the first time that cellular RALY specifically interacts with the IRES of FMDV and negatively regulates viral replication by blocking 80S ribosome assembly on FMDV IRES. Conversely, RALY-mediated inhibition is antagonized by the viral 3C protease by the ubiquitin-proteasome pathway. These results would facilitate further understanding of virus-host interactions and translational control during viral infection.


Assuntos
Vírus da Febre Aftosa , Animais , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Ligação a RNA/genética , Ribossomos/genética , Endopeptidases/metabolismo , Sítios Internos de Entrada Ribossomal , Proteases Virais 3C , Ubiquitinas/genética , Ubiquitinas/metabolismo
20.
Mol Biol Rep ; 51(1): 370, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411732

RESUMO

BACKGROUND: Foot and mouth disease (FMD) is a highly contagious disease that impacts cloven-hoofed animals globally. The illegal trade of livestock between the border regions of Pakistan and Afghanistan can contribute to the spread of this disease. This study focuses on investigating the outbreaks of FMD that occurred in this area from June 2020 to May 2021. METHODS: RESULTS: A total of 233 epithelial tissue samples were collected, and 77% were found positive for FMDV through an antigen-detection by ELISA and molecular conformation through RT-PCR. The study found three serotypes of FMDV dominating in the border area of Pakistan with Afghanistan: O, A, and Asia-1. The outbreak activity was peaked between August/September followed by July/October 2020. Phylogenetic analysis conducted using the VP1 region sequence showed that serotype O isolates belonged to the Middle East-South Asia (ME-SA) topotype, PanAsia-2 lineage, and ANT-10 sub-lineage, while serotype Asia-1 isolates belonged to a novel lineage BD-18.The highest prevalence of serotype O of FMDV was found in cattle and buffalo of 1-2 year age group, while the highest outbreak ratio of serotype O was recorded in goats of 0-1 year age group and sheep of > 2 year age group. The serotype O was more prevalent in male than female sheep. The type A was more prevalent in females of sheep and goats than their corresponding males. The serotype Asia-1 was more prevalent in females of cattle and sheep than their corresponding males. The outbreak epidemiology of FMD varied significantly between various regions, months of study, animal species, age groups, and gender. CONCLUSIONS: The study found that FMD outbreaks in the border area of Pakistan and Afghanistan were diverse and complicated, and that different types of FMDV were circulating. The study recommended effective actions to stop FMD transmission in this area.


Assuntos
Vírus da Febre Aftosa , Feminino , Masculino , Bovinos , Animais , Ovinos , Vírus da Febre Aftosa/genética , Afeganistão/epidemiologia , Paquistão/epidemiologia , Filogenia , Búfalos , Cabras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...